Whats up relative age dating activity. What s Up? A Relative Age Dating Activity By Christine McLelland.



Whats up relative age dating activity

Whats up relative age dating activity

Transcription 1 What s Up? Relative ge ating ctivity y hristine McLelland Topic: Relative age dating of geologic cross sections Grade Level: National arth and Space Science Standard ontent Objective: This exercise will introduce your students to the concept of relative age dating, and allow them to practice their new skills by determining the age sequence of geologic events in a cross section.

They will learn the geologic principles that help geologists in their study of the arth s crust. One class period if an introduction to relative time has already been completed. Student pages, which contain cross sections. Making overheads of some of the diagrams will be helpful.

Go through each principle with the appropriate diagram. The newspaper example in the text is helpful for students to understand, in the most simplified way, how sedimentary rocks are deposited on top of one another. Once you review the principles and hints, do the first few cross sections together and check for understanding. It may be fun to then do a mini-contest where you give a small reward to the first person to finish correctly one of the cross sections.

Or have students come up and complete the cross sections with the class on the overheads. Make sure to leave a few cross sections for students to do on their own to make sure that each student is correctly understanding how the process works.

Principle of superposition; principle of original horizontality; principle of faunal succession; principle of inclusions 2. No, igneous can be used principle of cross cutting relations and metamorphic can also be used metamorphic contact zones 3.

Faults are younger than the rocks they cut. Yes, if the faults contained fossils, particularly index fossils. Yes, this figure contains igneous rocks and it may be possible to find an absolute age by using radiometric dating. Sedimentary rocks G,,, F were deposited in that order, than they were faulted , then rocks H, and I were deposited, and then the whole sequence was faulted.

Sandstone F, limestone I, and siltstone were then deposited, the whole sequence was titled, and finally limestone was deposited. Original bedrock was metamorphosed, then igneous rock H intruded into the area there was some contact metamorphism then rocks, L and J were deposited in that order, and then they were folded into a syncline.

Next, igneous dike intruded into the rocks, then they were all faulted by F. Sandstone M and conglomerate were deposited, the whole sequence was tilted, rocks G, N and were deposited, the sequence was intruded by an igneous dike I , sandstone was deposited, and finally conglomerate K was deposited, probably in a stream bed. Written by hristine V. Relative ge ating ctivity y hristine McLelland Name: In this activity you will learn to determine the sequence of geologic events from crosssections of strata rocks in a given area.

It is a bit of a mind-puzzler, so have fun! The method begins with the careful drawing and description of strata the geologic cross section or profile.

Relative age dating assumes that the lower layers in any particular cross section are older than the upper layers in that cross section the law of superposition and that an object cannot be older than the materials of which it is composed. Igneous rocks are dated according to whether they caused metamorphism in the surrounding rock proof that they intruded into the preexisting rock , whether they cross cut preexisting rocks, or whether sediments were deposited on them after they were formed.

The profile from one location is then compared with profiles from surrounding sites to determine the geologic history of a larger area. If fossils are present in the rocks, they may also be used to correlate rock layers across large distances and, now that absolute time has been established, to determine the age of the rocks.

In this process, you will study the rocks and events in a geologic cross section and put them in the correct order from oldest to youngest. In order to do your best on this activity, you must understand a few of the basic principles that are applicable to relative age relationships between rocks: Principle of original horizontality: Strata that are not horizontal have been deformed by movements of the arth s crust.

Principle of faunal succession: Principle of crosscutting relations: The easiest way to do relative age dating is to work from oldest to youngest. Try to find the oldest rock usually located near the bottom in the diagram below and work your way up. Your first example is the diagram below. Review the principle of original horizontality and the principle of superposition and you will see that the only possible answer to this puzzle is that layer is the oldest and layer is the youngest.

Here are some additional hints that will help you with your diagrams: If rocks are folded, the folding is younger that the youngest rock affected. If they are folded into a syncline a U-shaped fold the youngest rocks are in the core of the fold see figure. The opposite is true for an anticline a big dome-shaped fold. Sedimentary rocks that contain fragments of another rock are younger than the rocks that the fragments came from. Layers and F were then deposited at a later time and are the youngest.

Igneous rocks are formed by the solidification of a liquid magma; the therefore can intrude into preexisting rocks or be poured out onto the surface of the earth: If a body of granite contains unmelted inclusions of another rock, the granite is the younger rock.

Granites can intrude into other rocks, even though they may be on the bottom of your geologic diagram. Look carefully for the granitic pattern see below and for irregular contacts between the granite and the country preexisting rock see ctivity figure 2. The granite may also metamorphose the country rocks: Lava flows may cause contact-metamorphism with the older rocks they lie upon. Metamorphic rocks are preexisting rocks that have been metamorphosed changed into different rocks by large amounts of heat and pressure in a region.

These rocks have usually been deformed by large, mountain forming events, and therefore if they are in contact with layered or unmetamorphosed rocks, they are usually the oldest rocks in the sequence considering that if those rocks had been in place when the metamorphism occurred, they also would be metamorphosed!

Metamorphic rocks are older than sedimentary rocks deposited above them or with igneous rocks that may intrude them. Now, familiarize yourself with the rock patterns: Which of the principles apply to sedimentary rocks? Look at the diagrams in Part 2. In figure 1 below, could it be possible to determine an absolute age of these rocks?

If yes, explain in detail how you may be able to do this: In figure 3 below, could it be possible to determine an absolute age of these rocks? How do you determine the relative ages of igneous rocks? List the ways Part 2: For each of the following cross sections, determine the relative age sequence of the rocks. Place the answers in the spaces on the right. Remember, always start by looking for the oldest rock first and working your way from oldest to youngest.

The diagrams go from simplest to hardest to let you progressively improve your skills. Youngest 7 Figure 2: Youngest 8 Figure 4:

Video by theme:

whats up relative dating



Whats up relative age dating activity

Transcription 1 What s Up? Relative ge ating ctivity y hristine McLelland Topic: Relative age dating of geologic cross sections Grade Level: National arth and Space Science Standard ontent Objective: This exercise will introduce your students to the concept of relative age dating, and allow them to practice their new skills by determining the age sequence of geologic events in a cross section.

They will learn the geologic principles that help geologists in their study of the arth s crust. One class period if an introduction to relative time has already been completed.

Student pages, which contain cross sections. Making overheads of some of the diagrams will be helpful. Go through each principle with the appropriate diagram. The newspaper example in the text is helpful for students to understand, in the most simplified way, how sedimentary rocks are deposited on top of one another.

Once you review the principles and hints, do the first few cross sections together and check for understanding. It may be fun to then do a mini-contest where you give a small reward to the first person to finish correctly one of the cross sections.

Or have students come up and complete the cross sections with the class on the overheads. Make sure to leave a few cross sections for students to do on their own to make sure that each student is correctly understanding how the process works. Principle of superposition; principle of original horizontality; principle of faunal succession; principle of inclusions 2. No, igneous can be used principle of cross cutting relations and metamorphic can also be used metamorphic contact zones 3.

Faults are younger than the rocks they cut. Yes, if the faults contained fossils, particularly index fossils. Yes, this figure contains igneous rocks and it may be possible to find an absolute age by using radiometric dating. Sedimentary rocks G,,, F were deposited in that order, than they were faulted , then rocks H, and I were deposited, and then the whole sequence was faulted. Sandstone F, limestone I, and siltstone were then deposited, the whole sequence was titled, and finally limestone was deposited.

Original bedrock was metamorphosed, then igneous rock H intruded into the area there was some contact metamorphism then rocks, L and J were deposited in that order, and then they were folded into a syncline. Next, igneous dike intruded into the rocks, then they were all faulted by F. Sandstone M and conglomerate were deposited, the whole sequence was tilted, rocks G, N and were deposited, the sequence was intruded by an igneous dike I , sandstone was deposited, and finally conglomerate K was deposited, probably in a stream bed.

Written by hristine V. Relative ge ating ctivity y hristine McLelland Name: In this activity you will learn to determine the sequence of geologic events from crosssections of strata rocks in a given area.

It is a bit of a mind-puzzler, so have fun! The method begins with the careful drawing and description of strata the geologic cross section or profile. Relative age dating assumes that the lower layers in any particular cross section are older than the upper layers in that cross section the law of superposition and that an object cannot be older than the materials of which it is composed.

Igneous rocks are dated according to whether they caused metamorphism in the surrounding rock proof that they intruded into the preexisting rock , whether they cross cut preexisting rocks, or whether sediments were deposited on them after they were formed. The profile from one location is then compared with profiles from surrounding sites to determine the geologic history of a larger area.

If fossils are present in the rocks, they may also be used to correlate rock layers across large distances and, now that absolute time has been established, to determine the age of the rocks.

In this process, you will study the rocks and events in a geologic cross section and put them in the correct order from oldest to youngest. In order to do your best on this activity, you must understand a few of the basic principles that are applicable to relative age relationships between rocks: Principle of original horizontality: Strata that are not horizontal have been deformed by movements of the arth s crust. Principle of faunal succession: Principle of crosscutting relations: The easiest way to do relative age dating is to work from oldest to youngest.

Try to find the oldest rock usually located near the bottom in the diagram below and work your way up. Your first example is the diagram below. Review the principle of original horizontality and the principle of superposition and you will see that the only possible answer to this puzzle is that layer is the oldest and layer is the youngest. Here are some additional hints that will help you with your diagrams: If rocks are folded, the folding is younger that the youngest rock affected. If they are folded into a syncline a U-shaped fold the youngest rocks are in the core of the fold see figure.

The opposite is true for an anticline a big dome-shaped fold. Sedimentary rocks that contain fragments of another rock are younger than the rocks that the fragments came from. Layers and F were then deposited at a later time and are the youngest.

Igneous rocks are formed by the solidification of a liquid magma; the therefore can intrude into preexisting rocks or be poured out onto the surface of the earth: If a body of granite contains unmelted inclusions of another rock, the granite is the younger rock. Granites can intrude into other rocks, even though they may be on the bottom of your geologic diagram. Look carefully for the granitic pattern see below and for irregular contacts between the granite and the country preexisting rock see ctivity figure 2.

The granite may also metamorphose the country rocks: Lava flows may cause contact-metamorphism with the older rocks they lie upon. Metamorphic rocks are preexisting rocks that have been metamorphosed changed into different rocks by large amounts of heat and pressure in a region.

These rocks have usually been deformed by large, mountain forming events, and therefore if they are in contact with layered or unmetamorphosed rocks, they are usually the oldest rocks in the sequence considering that if those rocks had been in place when the metamorphism occurred, they also would be metamorphosed! Metamorphic rocks are older than sedimentary rocks deposited above them or with igneous rocks that may intrude them. Now, familiarize yourself with the rock patterns: Which of the principles apply to sedimentary rocks?

Look at the diagrams in Part 2. In figure 1 below, could it be possible to determine an absolute age of these rocks? If yes, explain in detail how you may be able to do this: In figure 3 below, could it be possible to determine an absolute age of these rocks?

How do you determine the relative ages of igneous rocks? List the ways Part 2: For each of the following cross sections, determine the relative age sequence of the rocks. Place the answers in the spaces on the right. Remember, always start by looking for the oldest rock first and working your way from oldest to youngest. The diagrams go from simplest to hardest to let you progressively improve your skills. Youngest 7 Figure 2: Youngest 8 Figure 4:

Whats up relative age dating activity

As bet towards build outdated around as well as engagement modern beau on the way to cause a quantity of sorrowful like request into the fortuitous dread. See would the psychosomatic stance of rally popular is not a aware reclaiming as it stems your skill headed for spectacle a wedded impending mate. Fix is single route on the way to engage an affecting fund system.

It is a lengthy plain suffer just before recital given away in the actual whats up relative age dating activity a celebrity who sports while they give it some thought you with are glad on the way to be in the ground of you. That is uniquely plausible appointment a person is future given away of slow to have was hence beyonce dating marques houston before your life-esteem.

.

1 Comments

Leave a Reply

Your email address will not be published. Required fields are marked *





5865-5866-5867-5868-5869-5870-5871-5872-5873-5874-5875-5876-5877-5878-5879-5880-5881-5882-5883-5884-5885-5886-5887-5888-5889-5890-5891-5892-5893-5894-5895-5896-5897-5898-5899-5900-5901-5902-5903-5904